84 research outputs found

    2-(Thio­phen-2-yl)-1-(thio­phen-2-ylmeth­yl)-1H-benzimidazole

    Get PDF
    In the title compound, C16H12N2S2, the thio­phene groups are rotationally disordered over two sets of sites, by approximately 180°, with occupancy ratios of 0.916 (2):0.084 (2) and 0.903 (2):0.097 (2). The major components of the thio­phene and methyl­ene substituted thio­phene rings are canted by 24.06 (12) and 85.07 (10)°, respectively, from the benzimidazole ring system plane and the dihedral angle between the major component thio­phene ring planes is 84.90 (14)°. In the crystal, there is a weak C—H⋯N hydrogen bond which links mol­ecules into chains

    Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis

    Get PDF
    The dynamic nature of gene regulatory networks allows cells to rapidly respond to environmental change. However, the underlying temporal connections are missed, even in kinetic studies, as transcription factor (TF) binding within at least one time point is required to identify primary targets. The TF-regulated but unbound genes are dismissed as secondary targets. Instead, we report that these genes comprise transient TF-target interactions most relevant to rapid signal transduction. We temporally perturbed a master TF (Basic Leucine Zipper 1, bZIP1) and the nitrogen (N) signal it transduces and integrated TF regulation and binding data from the same cell samples. Our enabling approach could identify primary TF targets based solely on gene regulation, in the absence of TF binding. We uncovered three classes of primary TF targets: (i) poised (TF-bound but not TF-regulated), (ii) stable (TF-bound and TF-regulated), and (iii) transient (TF-regulated but not TF-bound), the largest class. Unexpectedly, the transient bZIP1 targets are uniquely relevant to rapid N signaling in planta, enriched in dynamic N-responsive genes, and regulated by TF and N signal interactions. These transient targets include early N responders nitrate transporter 2.1 and NIN-like protein 3, bound by bZIP1 at 1-5 min, but not at later time points following TF perturbation. Moreover, promoters of these transient targets are uniquely enriched with cis-regulatory motifs coinherited with bZIP1 binding sites, suggesting a recruitment role for bZIP1. This transient mode of TF action supports a classic, but forgotten, "hit-and-run" transcription model, which enables a "catalyst TF" to activate a large set of targets within minutes of signal perturbation

    Rapid Genotyping of Soybean Cultivars Using High Throughput Sequencing

    Get PDF
    Soybean (Glycine max) breeding involves improving commercially grown varieties by introgressing important agronomic traits from poor yielding accessions and/or wild relatives of soybean while minimizing the associated yield drag. Molecular markers associated with these traits are instrumental in increasing the efficiency of producing such crosses and Single Nucleotide Polymorphisms (SNPs) are particularly well suited for this task, owing to high density in the non-genic regions and thus increased likelihood of finding a tightly linked marker to a given trait. A rapid method to develop SNP markers that can differentiate specific loci between any two parents in soybean is thus highly desirable. In this study we investigate such a protocol for developing SNP markers between multiple soybean accessions and the reference Williams 82 genome. To restrict sampling frequency reduced representation libraries (RRLs) of genomic DNA were generated by restriction digestion followed by library construction. We chose to sequence four accessions Dowling (PI 548663), Dwight (PI 597386), Komata (PI200492) and PI 594538A for their agronomic importance as well as Williams 82 as a control

    A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants

    Get PDF
    Members of the plant NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER (NRT1/PTR) family display protein sequence homology with the SLC15/PepT/PTR/POT family of peptide transporters in animals. In comparison to their animal and bacterial counterparts, these plant proteins transport a wide variety of substrates: nitrate, peptides, amino acids, dicarboxylates, glucosinolates, IAA, and ABA. The phylogenetic relationship of the members of the NRT1/PTR family in 31 fully sequenced plant genomes allowed the identification of unambiguous clades, defining eight subfamilies. The phylogenetic tree was used to determine a unified nomenclature of this family named NPF, for NRT1/PTR FAMILY. We propose that the members should be named accordingly: NPFX.Y, where X denotes the subfamily and Y the individual member within the species

    The transcriptional landscape of Arabidopsis thaliana pattern-triggered immunity

    Get PDF
    Plants tailor their metabolism to environmental conditions, in part through the recognition of a wide array of self and non-self molecules. In particular, the perception of microbial or plant-derived molecular patterns by cell-surface-localized pattern recognition receptors (PRRs) induces pattern-triggered immunity, which includes massive transcriptional reprogramming1. An increasing number of plant PRRs and corresponding ligands are known, but whether plants tune their immune outputs to patterns of different biological origins or of different biochemical natures remains mostly unclear. Here, we performed a detailed transcriptomic analysis in an early time series focused to study rapid-signalling transcriptional outputs induced by well-characterized patterns in the model plant Arabidopsis thaliana. This revealed that the transcriptional responses to diverse patterns (independent of their origin, biochemical nature or type of PRR) are remarkably congruent. Moreover, many of the genes most rapidly and commonly upregulated by patterns are also induced by abiotic stresses, suggesting that the early transcriptional response to patterns is part of the plant general stress response (GSR). As such, plant cells' response is in the first instance mostly to danger. Notably, the genetic impairment of the GSR reduces pattern-induced antibacterial immunity, confirming the biological relevance of this initial danger response. Importantly, the definition of a small subset of 'core immunity response' genes common and specific to pattern response revealed the function of previously uncharacterized GLUTAMATE RECEPTOR-LIKE (GLR) calcium-permeable channels in immunity. This study thus illustrates general and unique properties of early immune transcriptional reprogramming and uncovers important components of plant immunity

    Genome composition of Glycine max and sequence diversity among cultivated and exotic accessions

    Get PDF
    Soybean is an economically important crop in large portions of the world. Incorporation of soybean in to the food system in many direct and indirect ways has vastly increased the nutritional quality of low cost and plant-based diets. Therefore an enormous amount of effort has gone into increasing the yield and nutritional quality of soybeans through plant breeding over hundreds of years. Despite this economic and nutritional importance the soybean genome was largely uncharacterized until 2004. Research described in here deals with the application of novel sequencing technologies to elucidate the soybean genome composition as an initial step to understanding the organization of the genome. Three, partially independent, studies were performed to study soybean genome content and diversity. The first study applied 454 pyrosequencing to obtain a low coverage survey that identifi ed repeat composition of the genome. The second study compiled data from numerous small RNA sequence datasets to follow the small RNA level regulation of soybean genes and the maintenance of genomic stability by siRNA mediated heterochromatization. The third study applied a reduced representation sampling strategy to identify SNP markers in the non-repetitive regions of the genome that can distinguish between soybean accessions. The method developed in this study should be generally applicable to other lines of soybean or even in other crop plants that have a fully sequenced genome. These studies, along with others reported simultaneously, and those that will be conducted in the near future, together enhance our understanding of soybean and increase our ability to manipulate this important species to our advantage

    Cyclization of 2′-hydroxychalcones to flavones using ammonium iodide as an iodine source: An eco-friendly approach

    No full text
    Ammonium iodide in open air decomposes to ammonia and iodine. The in situ generated iodine has been used for cyclization of 2′-hydroxychalcones to corresponding flavones under solvent free conditions with good to excellent yields. This method would serve as an attractive alternative to the existing methods for synthesis of flavones and use of toxic molecular iodine is avoided
    • …
    corecore